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Abstract
The Kaup–Kupershmidt equation is generalized to a system of equations in the
same manner as the Korteweg–de Vries equation is generalized to the Hirota–
Satsuma equation. The Gelfand–Dikii–Lax and Hamiltonian formulation
for this generalization is given. The same construction is repeated for the
constrained Kadomtsev–Pietviashvili–Lax operator which leads to the four-
component Kaup–Kupershmidt equation. The modified version of the two-
component Kaup–Kupershmidt equation is presented and analysed.

PACS numbers: 05.45−a, 05.45.Yv

1. Introduction

Large classes of nonlinear partial differential equations are integrable by the inverse spectral
transform method and its modifications [1, 2]. It is well known that most of the integrable
partial differential equations,

ut = F(t, x, u, ux, uxx, . . .), (1)

admit the so-called Lax representation

∂L

∂t
= [A,L], (2)

and hence the inverse-scattering method is applicable.
We shall consider the case where the Lax operator is a differential operator

L = ∂m + um−2∂
m−2 + · · · + u0, (3)

where ui, i = 0, 1, . . . , m − 2, are functions of x, t . Then equation (2) gives us the Gelfand–
Dikii system where A = Ln/m is a pseudo-differential series of the form Ln/m = ∑i=n

−∞ vi∂
i

and L
n/m

�0 = ∑n
i=0 vi∂

i .
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Quite different systems of equations could be obtained considering the Kadomtsev–
Pietviashvili (KP) hierarchy within Sato’s approach [3, 4]. In this case, the Lax operator is
spanned by infinitely many fields

LKP = ∂ + u1∂
−1 + u2∂

−2 + · · · , (4)

with the following Lax pair representation:

∂L

∂t
= [(LN)�0, L]. (5)

Both these hierarchies describe large classes of nonlinear partial differential equations.
In order to find some interesting equations in these hierarchies, sometimes we need to apply
the reduction procedure in which some functions are described in terms of other functions
used in the Lax operator. We have no unique prescription how to carry out such a procedure
at the moment. Kupershmidt [5] has noted that a certain invariance of the partial differential
nonlinear equations can be extracted from the Lax operator. This observation allowed him to
put some constraints on the functions appearing in the Lax operator. This procedure is called
now the Kupershmidt reduction [1].

In this letter, we would like to consider some specific reduction of the Gelfand–Dikii Lax
operator in which the Lax operator can be factorized as the product of two Lax operators. This
idea follows from the observation that the product of two Lax operators [6] of the Korteweg–de
Vries equations

L = (∂2 + u)(∂2 + v) (6)

creates the whole hierarchy of equations with the following Lax pair representation:

∂L

∂tn
= 8[(L(2n+1)/4)�0, L], (7)

where n = 0, 1, 2, . . . and the factor 8 was chosen in such a way as to normalize the higher
term in the equation. For n = 1, we have the Hirota–Satsuma equation [7]

∂u

∂t1
= (−uxxx + 3vxxx − 6uxu + 6vux + 12vxu),

∂v

∂t1
= (−vxxx + 3uxxx − 6vxv + 6vxu + 12vux),

(8)

while for n = 2

∂u

∂t2
= (−3uxxxxx − 15uxxxu − 15uxxux − 15uxu

2 + 5vxxxxx

+ 25vxxxu + 5vxxxv + 25vxxux + 15vxxvx + 15vxuxx

+ 20vxu
2 + 20vxvu + 5v2ux + 5vuxxx + 30vuxu)/4,

(9)
∂v

∂t2
= (5uxxxxx + 5uxxxu + 15uxxux − 3vxxxxx + 5vxxxu

− 15vxxxv + 15vxxux − 15vxxvx + 25vxuxx + 5vxu
2

− 15vxv
2 + 30vxvu + 20v2ux + 25vuxxx + 20vuxu)/4.

Let us note that both these equations could be rewritten in the Hamiltonian form as(
u

v

)
tn

= J

(
δHn

δu

δHn

δv

)
=

(
− 1

2∂3 − 2u∂ − ux 0

0 − 1
2∂3 − 2v∂ − vx

)(
δHn

δu

δHn

δv

)
, (10)
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where n = 1, 2 and

H1 =
∫

dx Res(L3/2) =
∫

dx (u2 + v2 − 6uv),

H2 =
∫

dx Res(L5/2) =
∫

dx ((3uxx + 10vxx)u − u3 − 3vxxv − v3 + 5vu(v + u)),

(11)

and Res denotes the coefficient standing in the ∂−1 term.
Recently it was shown in [8] that a similar construction could be carried out for the Harry

Dym equation, which leads to the system of interacting equations. However, the Lax operator
for the Harry Dym equation does not belong to the Gelfand–Dikii system.

Both these equations could be considered either as the extension of the known equations
or as the reduction of the Lax pair representations. Indeed the Lax operator (6) could be
considered as the admissible reduction of the fourth-order Gelfand–Dikii–Lax operator

L = ∂4 + f2∂
2 + f1∂ + f0, (12)

where

f2 = u + v, f1 = 2vx, f0 = vxx + vu. (13)

Now we would like to repeat the similar construction for the Boussinesq-type Lax
operators. We choose the third-order Lax operator of the form

L = ∂3 + u∂ + λux, (14)

where at the moment λ is a free parameter.
This Lax operator generates the whole hierarchy of equations, and the first nontrivial

equation starts from the fifth flow

∂L

∂t5
= 9[(L(5/3)�0, L], (15)

of the form

ut =
(

−u4x − 5uxxu + 15λ(λ − 1)u2
x − 5

3
u3

)
x

(16)

only when λ = 1
2 , 1, 0. Note that the factor 9 was chosen in such a way as to normalize the

higher terms in the equation.
For λ = 1

2 , we have the Kaup–Kupershmidt hierarchy [9, 10] while for λ = 1 or λ = 0
we obtain the Sawada–Kotera hierarchy [11]. Both these equations are Hamiltonian where

ut =
(

c∂3 +
1

15
(∂u + u∂)

)
δH

δu
(17)

where

H1 =
∫

dx
(
3(3λ2 − 3λ + 1)u2

x − 5u3
)

(18)

and c = 2
15 for λ = 1

2 or c = 1
15 for λ = 1 or λ = 0.

Now we consider a new Lax operator as the product of two different Lax operators of the
Boussinesq type

L := (∂3 + v∂ + λvx)(∂
3 + (u − v)∂ + λ(ux − vx)). (19)

The consistent hierarchy could be obtained only for λ = 1
2 , and first two nontrivial flows are

∂L

∂tn
= 9[(L(n/6)�0, L], (20)
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which give us

vt3 = 9
2

(
uxxx − 2vxxx + 1

2vxu − 3vxv + vux

)
ut3 = 9

2

(− 3
4u2 − 3v2 + 3uv

)
x

(21)

vt5 = (−5uxxxx + 9vxxxx − 5
2uxxu − 5

2u2
x + 15vxxv + 15

4 v2
x + 5

2v3 − 5
2vuxx − 5

8vu2
)
x

− 5
2vuxxx − 5

4vuxu

ut5 = (−uxxxx + 5uxxu + 35
24u3 − 15vxxu + 30vxxv + 15

2 v2
x − 15

2 vvux + 15
2 u2v

− 15vuxxx − 15
2 vu2)

x

(22)

The last system of the above equations is our two-component generalized Kaup–Kupershmidt
equation. This system cannot be reduced to the system of equations (9) by the linear
transformation.

Interestingly this two-component generalization has been considered for the first time
in [4] where the authors investigated the so-called constrained Kadomtsev–Pietviashvilli
hirerarchy. The constrained KP hierarchy is obtained from the usual KP hierarchy as

LN
KP = (

LN
KP

)
�0 + �∂−1�, (23)

with LKP defined by (4). Then equations (21) and (22) could be obtained by choosing

LKP = ∂3 + 1
2u∂ + 1

4ux + 1
16 (2v − u)∂−1(2v − u). (24)

In contrast to the usual Kaup–Kupershmidt hierarchy, which starts from the fifth flow, our
hierarchy begins from the third flow. Note that our Lax operator as well as the equations allows
the reduction to the standard Kaup–Kupershmidt Lax operator or equations when u = 2v.

Both these systems are Hamiltonian where(
u

v

)
tn

= J
δHn

δv
= 1

216

(
4∂3 + ∂u + u∂ 2∂3 + ∂v + v∂

2∂3 + ∂v + v∂ 2∂3 + ∂v + v∂

) (
δHn

δu

δHn

δv

)
(25)

and

H3 =
∫

dx Res(L3/6) = 54
∫

dx(4uv − 4v2 − u2)

H5 =
∫

dx Res(L5/6) =
∫

dx(7u3 + 24uxxu − (108vxx − 36vu)(v − u)).

(26)

By straightforward calculations, it is easy to show that the Hamiltonian operator J satisfies
the Jacobi identity.

Let us now consider the following Miura transformation:

u = ax, v = bx − 1
4b2, (27)

where a, b are functions of x and t. It is easy to show that this transforms the system of
equations

at3 = 1
16

(−12a2
x − 48b2

x + 48bxax + 24bxb
2 − 3b4 − 12b2ax

)
bt3 = 1

4 (4axx − 8bxx + b3 + 2bax)x

(28)
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at5 = 1
96

(−96axxxxx + 480axxxax + 140a3
x + 1440bxxx(2bx − ax)

+ 720bxx

(−axx − 3bxb + 1
2b3

)
+ 45b4ax + 360b2axxx + 180b2a2

x

+ 360bx

(−4b2
x + 4bxax + 3

2bxb
2 − 4axxx − b2ax + baxx

))
bt5 = 1

32

(−160axxxx − 80axxax + 288bxxxx − 240bxxbx − 120bxxb
2

−12b2
xb + 3b5 − 80baxxx − 20ba2

x

)
x

(29)

to the system (21) or (22) respectively.
Note that equations (28) describe the system of two interacting fields of the modified

Korteweg–de Vries type. This system of equations does not belong to the class of interacting
fields considered by Foursov [12]. Foursov has classified all integrable systems of two
interacting modified KdV-type equations which could be reduced to the symmetrical form

ut = F [u, v], vt = F [v, u], (30)

where F [u, v] = F [u, ux, uxx, . . . , v, vx, vxx, . . .] denotes differential polynomial function
of two variables. However, our system of equations (24) cannot be reduced to the symmetrical
form by the linear transformation.

Interestingly system (28) collapses when u = 2v. Indeed the condition u = 2v is
equivalent with the assumption that

ax = 2bx − 1
2b2, (31)

and therefore we have at3 = 0. The system of equation (29) reduces when u = 2v to the
modified version of the Kaup–Kupershmidt equation

bt = 1
16

(−16bxxxx − 40bxxbx + 20bxxb
2 + 20b2

xb − b5
)
x
. (32)

Our equations (28) and (29) are Hamiltonian equations where(
a

b

)
tn

= D
(

δHn

δa

δHn

δb

)
= 1

2

(
−4∂ − (∂−1ax − ax∂

−1) −2∂ − ∂−1bx + b

−2∂ − b − bx∂
−1 −2∂

) (
δHn

δa

δHn

δb

)
, (33)

where n = 3, 5 and

H3 =
∫

dx

(
1

2
axxa − 2bxxa + 2bxxb + bxba − 1

8
b4

)

H5 =
∫

dx(24axxxxa + 14axxaxa − 108bxxxx(a − b) + 54bxxxbxb

+ bxx(234bxa − 36axa − 108bxb − 18b2a) + b2
x(27b2 − 36ba)

+ bx(bb3a − 36axxa + 18baaa) + 9b2axxa).

(34)

It is easy to check that the operator D is the Hamiltonian operator. Indeed it is enough to note
that under the Miura transformation (27) this operator transforms to the Ĵ = FDF�, where F
is the Freche derivative of the Miura transformation and � denotes the Hermitian conjugation.

Ĵ =
(

∂ 0
0 −∂ − 1

2b

)
. (35)

Let us apply finally the factorization procedure directly to the constrained Kadomtsev–
Petviashvili–Lax operator. We consider therefore two different Lax operators

L1 = ∂3 + v∂ + 1
2vx + h∂−1h, L2 = ∂3 + (u − v)∂ + 1

2 (ux − vx) + g∂−1g, (36)
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and construct the new Lax operator as

L = L1L2. (37)

This Lax operator generates the integrable hierarchy of four interacting fields. The first
nontrivial equations are

ut3 = 9
2

(
6g2 + 6h2 − 3

2u2 + 6vu − 6v2
)
x

vt3 = 9
2 (12hhx + 2uxxx − 4vxxx + vxu − 6vxv + 2vux)

gt3 = 9
2 (2gxxx − uxg + ugx + 3vxg)

ht3 = 9
2 (2hxxx + 2uxh + uhx − 3vxh),

(38)

ut5 = (
60gxxg + 15g2

x + 60hxxh + 15h2
x − uxxxx + 5uxxu + 35

24u3 − 15
2 ug2 + 75

2 uh2

− 15vxxu + 30vxxv + 15
2 v2

x − 15
2 vxux + 15

2 v2u + 45vg2

− 45vh2 − 15vuxx − 15
2 vu2)

x
,

vt5 = 30gxxxg + 90gxxgx + 30hxxxh − 5uxxxxx − 5
2uxxxu − 15

2 uxxux + 30uxh
2 + 45uhxh

+ 9vxxxxx + 15vxxxv + 45
2 vxxvx + 15

2 vxg
2 − 75

2 vxh
2 − 5

2vxuxx − 5
8vxu

2

+ 15
2 60vxv

2 + 30vgxg − 60vhxh − 5vuxxx − 5
2vuxu

gt5 = 9gxxxxx − 15
2 gxg

2 + 30hxhg + 15
2 h2gx + 5

2uxxxg − 5
2uxxgx + 5

4uxug − 5
8u2gx

+ 15
2 ugxxx + 45

2 vxxgx + 45
2 vxgxx + 15

4 vxug − 15
2 vxvg − 15

2 v2gx + 15
2 vugx

ht5 = 9hxxxxx + 15
2 hxg

2 − 15
2 hxh

2 + 30hgxg + 5
2uxxxh + 20uxxhx + 45

2 uxhxx

− 5
2uxuh − 5

8u2hx + 15
2 uhxxx − 45

2 vxxhx − 45
2 vxhxx

+ 15
4 vxuh − 15

2 vxvh − 15
2 v2hx + 15

2 vuxh + 15
2 vuhx.

(39)

The last system of equations could be considered as the four-component generalized Kaup–
Kupershmidt equation. This equation reduces to the two-component Kaup–Kupershmidt
equation when g = h = 0.
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