The two-component Kaup-Kupershmidt equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 37 L511
(http://iopscience.iop.org/0305-4470/37/42/L03)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.64
The article was downloaded on 02/06/2010 at 19:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The two-component Kaup-Kupershmidt equation

Ziemowit Popowicz
University of Wrocław, Institute of Theoretical Physics, pl. M. Borna 9, 50-205 Wrocław, Poland
E-mail: ziemek@ift.uni.wroc.pl

Received 19 August 2004
Published 6 October 2004
Online at stacks.iop.org/JPhysA/37/L511
doi:10.1088/0305-4470/37/42/L03

Abstract

The Kaup-Kupershmidt equation is generalized to a system of equations in the same manner as the Korteweg-de Vries equation is generalized to the HirotaSatsuma equation. The Gelfand-Dikii-Lax and Hamiltonian formulation for this generalization is given. The same construction is repeated for the constrained Kadomtsev-Pietviashvili-Lax operator which leads to the fourcomponent Kaup-Kupershmidt equation. The modified version of the twocomponent Kaup-Kupershmidt equation is presented and analysed.

PACS numbers: $05.45-\mathrm{a}, 05.45 . \mathrm{Yv}$

1. Introduction

Large classes of nonlinear partial differential equations are integrable by the inverse spectral transform method and its modifications [1, 2]. It is well known that most of the integrable partial differential equations,

$$
\begin{equation*}
u_{t}=F\left(t, x, u, u_{x}, u_{x x}, \ldots\right), \tag{1}
\end{equation*}
$$

admit the so-called Lax representation

$$
\begin{equation*}
\frac{\partial L}{\partial t}=[A, L] \tag{2}
\end{equation*}
$$

and hence the inverse-scattering method is applicable.
We shall consider the case where the Lax operator is a differential operator

$$
\begin{equation*}
L=\partial^{m}+u_{m-2} \partial^{m-2}+\cdots+u_{0} \tag{3}
\end{equation*}
$$

where $u_{i}, i=0,1, \ldots, m-2$, are functions of x, t. Then equation (2) gives us the GelfandDikii system where $A=L^{n / m}$ is a pseudo-differential series of the form $L^{n / m}=\sum_{-\infty}^{i=n} v_{i} \partial^{i}$ and $L_{\geqslant 0}^{n / m}=\sum_{i=0}^{n} v_{i} \partial^{i}$.

Quite different systems of equations could be obtained considering the KadomtsevPietviashvili (KP) hierarchy within Sato's approach [3, 4]. In this case, the Lax operator is spanned by infinitely many fields

$$
\begin{equation*}
L_{K P}=\partial+u_{1} \partial^{-1}+u_{2} \partial^{-2}+\cdots, \tag{4}
\end{equation*}
$$

with the following Lax pair representation:

$$
\begin{equation*}
\frac{\partial L}{\partial t}=\left[\left(L^{N}\right)_{\geqslant 0}, L\right] . \tag{5}
\end{equation*}
$$

Both these hierarchies describe large classes of nonlinear partial differential equations. In order to find some interesting equations in these hierarchies, sometimes we need to apply the reduction procedure in which some functions are described in terms of other functions used in the Lax operator. We have no unique prescription how to carry out such a procedure at the moment. Kupershmidt [5] has noted that a certain invariance of the partial differential nonlinear equations can be extracted from the Lax operator. This observation allowed him to put some constraints on the functions appearing in the Lax operator. This procedure is called now the Kupershmidt reduction [1].

In this letter, we would like to consider some specific reduction of the Gelfand-Dikii Lax operator in which the Lax operator can be factorized as the product of two Lax operators. This idea follows from the observation that the product of two Lax operators [6] of the Korteweg-de Vries equations

$$
\begin{equation*}
L=\left(\partial^{2}+u\right)\left(\partial^{2}+v\right) \tag{6}
\end{equation*}
$$

creates the whole hierarchy of equations with the following Lax pair representation:

$$
\begin{equation*}
\frac{\partial L}{\partial t_{n}}=8\left[\left(L^{(2 n+1) / 4}\right)_{\geqslant 0}, L\right], \tag{7}
\end{equation*}
$$

where $n=0,1,2, \ldots$ and the factor 8 was chosen in such a way as to normalize the higher term in the equation. For $n=1$, we have the Hirota-Satsuma equation [7]

$$
\begin{align*}
& \frac{\partial u}{\partial t_{1}}=\left(-u_{x x x}+3 v_{x x x}-6 u_{x} u+6 v u_{x}+12 v_{x} u\right) \\
& \frac{\partial v}{\partial t_{1}}=\left(-v_{x x x}+3 u_{x x x}-6 v_{x} v+6 v_{x} u+12 v u_{x}\right) \tag{8}
\end{align*}
$$

while for $n=2$

$$
\begin{align*}
& \frac{\partial u}{\partial t_{2}}=\left(-3 u_{x x x x x}-15 u_{x x x} u-15 u_{x x} u_{x}-15 u_{x} u^{2}+5 v_{x x x x x}\right. \\
& +25 v_{x x x} u+5 v_{x x x} v+25 v_{x x} u_{x}+15 v_{x x} v_{x}+15 v_{x} u_{x x} \\
& \left.+20 v_{x} u^{2}+20 v_{x} v u+5 v^{2} u_{x}+5 v u_{x x x}+30 v u_{x} u\right) / 4, \\
& \frac{\partial v}{\partial t_{2}}=\left(5 u_{x x x x x}+5 u_{x x x} u+15 u_{x x} u_{x}-3 v_{x x x x x x}+5 v_{x x x} u\right. \tag{9}\\
& -15 v_{x x x} v+15 v_{x x} u_{x}-15 v_{x x} v_{x}+25 v_{x} u_{x x}+5 v_{x} u^{2} \\
& \left.-15 v_{x} v^{2}+30 v_{x} v u+20 v^{2} u_{x}+25 v u_{x x x}+20 v u_{x} u\right) / 4 .
\end{align*}
$$

Let us note that both these equations could be rewritten in the Hamiltonian form as

$$
\binom{u}{v}_{t_{n}}=J\binom{\frac{\delta H_{n}}{\delta u}}{\frac{\delta H_{n}}{\delta v}}=\left(\begin{array}{cc}
-\frac{1}{2} \partial^{3}-2 u \partial-u_{x} & 0 \tag{10}\\
0 & -\frac{1}{2} \partial^{3}-2 v \partial-v_{x}
\end{array}\right)\binom{\frac{\delta H_{n}}{\delta u}}{\frac{\delta H_{n}}{\delta v}},
$$

where $n=1,2$ and
$H_{1}=\int \mathrm{d} x \operatorname{Res}\left(L^{3 / 2}\right)=\int \mathrm{d} x\left(u^{2}+v^{2}-6 u v\right)$,
$H_{2}=\int \mathrm{d} x \operatorname{Res}\left(L^{5 / 2}\right)=\int \mathrm{d} x\left(\left(3 u_{x x}+10 v_{x x}\right) u-u^{3}-3 v_{x x} v-v^{3}+5 v u(v+u)\right)$,
and Res denotes the coefficient standing in the ∂^{-1} term.
Recently it was shown in [8] that a similar construction could be carried out for the Harry Dym equation, which leads to the system of interacting equations. However, the Lax operator for the Harry Dym equation does not belong to the Gelfand-Dikii system.

Both these equations could be considered either as the extension of the known equations or as the reduction of the Lax pair representations. Indeed the Lax operator (6) could be considered as the admissible reduction of the fourth-order Gelfand-Dikii-Lax operator

$$
\begin{equation*}
L=\partial^{4}+f_{2} \partial^{2}+f_{1} \partial+f_{0} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{2}=u+v, \quad f_{1}=2 v_{x}, \quad f_{0}=v_{x x}+v u \tag{13}
\end{equation*}
$$

Now we would like to repeat the similar construction for the Boussinesq-type Lax operators. We choose the third-order Lax operator of the form

$$
\begin{equation*}
L=\partial^{3}+u \partial+\lambda u_{x}, \tag{14}
\end{equation*}
$$

where at the moment λ is a free parameter.
This Lax operator generates the whole hierarchy of equations, and the first nontrivial equation starts from the fifth flow

$$
\begin{equation*}
\frac{\partial L}{\partial t_{5}}=9\left[\left(L^{(5 / 3}\right)_{\geqslant 0}, L\right] \tag{15}
\end{equation*}
$$

of the form

$$
\begin{equation*}
u_{t}=\left(-u_{4 x}-5 u_{x x} u+15 \lambda(\lambda-1) u_{x}^{2}-\frac{5}{3} u^{3}\right)_{x} \tag{16}
\end{equation*}
$$

only when $\lambda=\frac{1}{2}, 1,0$. Note that the factor 9 was chosen in such a way as to normalize the higher terms in the equation.

For $\lambda=\frac{1}{2}$, we have the Kaup-Kupershmidt hierarchy $[9,10]$ while for $\lambda=1$ or $\lambda=0$ we obtain the Sawada-Kotera hierarchy [11]. Both these equations are Hamiltonian where

$$
\begin{equation*}
u_{t}=\left(c \partial^{3}+\frac{1}{15}(\partial u+u \partial)\right) \frac{\delta H}{\delta u} \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{1}=\int \mathrm{d} x\left(3\left(3 \lambda^{2}-3 \lambda+1\right) u_{x}^{2}-5 u^{3}\right) \tag{18}
\end{equation*}
$$

and $c=\frac{2}{15}$ for $\lambda=\frac{1}{2}$ or $c=\frac{1}{15}$ for $\lambda=1$ or $\lambda=0$.
Now we consider a new Lax operator as the product of two different Lax operators of the Boussinesq type

$$
\begin{equation*}
L:=\left(\partial^{3}+v \partial+\lambda v_{x}\right)\left(\partial^{3}+(u-v) \partial+\lambda\left(u_{x}-v_{x}\right)\right) . \tag{19}
\end{equation*}
$$

The consistent hierarchy could be obtained only for $\lambda=\frac{1}{2}$, and first two nontrivial flows are

$$
\begin{equation*}
\frac{\partial L}{\partial t_{n}}=9\left[\left(L^{(n / 6}\right) \geqslant 0, L\right], \tag{20}
\end{equation*}
$$

which give us
$v_{t_{3}}=\frac{9}{2}\left(u_{x x x}-2 v_{x x x}+\frac{1}{2} v_{x} u-3 v_{x} v+v u_{x}\right)$
$u_{t_{3}}=\frac{9}{2}\left(-\frac{3}{4} u^{2}-3 v^{2}+3 u v\right)_{x}$
$v_{t 5}=\left(-5 u_{x x x x}+9 v_{x x x x}-\frac{5}{2} u_{x x} u-\frac{5}{2} u_{x}^{2}+15 v_{x x} v+\frac{15}{4} v_{x}^{2}+\frac{5}{2} v^{3}-\frac{5}{2} v u_{x x}-\frac{5}{8} v u^{2}\right)_{x}$
$-\frac{5}{2} v u_{x x x}-\frac{5}{4} v u_{x} u$
$u_{t_{5}}=\left(-u_{x x x x}+5 u_{x x} u+\frac{35}{24} u^{3}-15 v_{x x} u+30 v_{x x} v+\frac{15}{2} v_{x}^{2}-\frac{15}{2} v_{v} u_{x}+\frac{15}{2} u^{2} v\right.$

$$
\left.-15 v u_{x} x x-\frac{15}{2} v u^{2}\right)_{x}
$$

The last system of the above equations is our two-component generalized Kaup-Kupershmidt equation. This system cannot be reduced to the system of equations (9) by the linear transformation.

Interestingly this two-component generalization has been considered for the first time in [4] where the authors investigated the so-called constrained Kadomtsev-Pietviashvilli hirerarchy. The constrained KP hierarchy is obtained from the usual KP hierarchy as

$$
\begin{equation*}
L_{\mathrm{KP}}^{N}=\left(L_{\mathrm{KP}}^{N}\right)_{\geqslant 0}+\Psi \partial^{-1} \Phi, \tag{23}
\end{equation*}
$$

with L_{KP} defined by (4). Then equations (21) and (22) could be obtained by choosing

$$
\begin{equation*}
L_{\mathrm{KP}}=\partial^{3}+\frac{1}{2} u \partial+\frac{1}{4} u_{x}+\frac{1}{16}(2 v-u) \partial^{-1}(2 v-u) . \tag{24}
\end{equation*}
$$

In contrast to the usual Kaup-Kupershmidt hierarchy, which starts from the fifth flow, our hierarchy begins from the third flow. Note that our Lax operator as well as the equations allows the reduction to the standard Kaup-Kupershmidt Lax operator or equations when $u=2 v$.

Both these systems are Hamiltonian where

$$
\binom{u}{v}_{t_{n}}=J \frac{\delta H_{n}}{\delta v}=\frac{1}{216}\left(\begin{array}{ll}
4 \partial^{3}+\partial u+u \partial & 2 \partial^{3}+\partial v+v \partial \tag{25}\\
2 \partial^{3}+\partial v+v \partial & 2 \partial^{3}+\partial v+v \partial
\end{array}\right)\binom{\frac{\delta H_{n}}{\delta u}}{\frac{\delta H_{n}}{\delta v}}
$$

and
$H_{3}=\int \mathrm{d} x \operatorname{Res}\left(L^{3 / 6}\right)=54 \int \mathrm{~d} x\left(4 u v-4 v^{2}-u^{2}\right)$
$H_{5}=\int \mathrm{d} x \operatorname{Res}\left(L^{5 / 6}\right)=\int \mathrm{d} x\left(7 u^{3}+24 u_{x x} u-\left(108 v_{x x}-36 v u\right)(v-u)\right)$.
By straightforward calculations, it is easy to show that the Hamiltonian operator J satisfies the Jacobi identity.

Let us now consider the following Miura transformation:

$$
\begin{equation*}
u=a_{x}, \quad v=b_{x}-\frac{1}{4} b^{2} \tag{27}
\end{equation*}
$$

where a, b are functions of x and t. It is easy to show that this transforms the system of equations

$$
\begin{align*}
& a_{t_{3}}=\frac{1}{16}\left(-12 a_{x}^{2}-48 b_{x}^{2}+48 b_{x} a_{x}+24 b_{x} b^{2}-3 b^{4}-12 b^{2} a_{x}\right) \\
& b_{t_{3}}=\frac{1}{4}\left(4 a_{x x}-8 b_{x x}+b^{3}+2 b a_{x}\right)_{x} \tag{28}
\end{align*}
$$

$$
\begin{align*}
& \begin{aligned}
& a_{t 5}=\frac{1}{96}\left(-96 a_{x x x x x}+480 a_{x x x} a_{x}+140 a_{x}^{3}+1440 b_{x x x}\left(2 b_{x}-a_{x}\right)\right. \\
&+720 b_{x x}\left(-a_{x x}-3 b_{x} b+\frac{1}{2} b^{3}\right)+45 b^{4} a_{x}+360 b^{2} a_{x x x}+180 b^{2} a_{x}^{2} \\
&\left.+360 b_{x}\left(-4 b_{x}^{2}+4 b_{x} a_{x}+\frac{3}{2} b_{x} b^{2}-4 a_{x x x}-b^{2} a_{x}+b a_{x x}\right)\right) \\
& b_{t_{5}}=\frac{1}{32}\left(-160 a_{x x x x}-80 a_{x x} a_{x}+288 b_{x x x x}-240 b_{x x} b_{x}-120 b_{x x} b^{2}\right. \\
&\left.-12 b_{x}^{2} b+3 b^{5}-80 b a_{x x x}-20 b a_{x}^{2}\right)_{x}
\end{aligned}
\end{align*}
$$

to the system (21) or (22) respectively.
Note that equations (28) describe the system of two interacting fields of the modified Korteweg-de Vries type. This system of equations does not belong to the class of interacting fields considered by Foursov [12]. Foursov has classified all integrable systems of two interacting modified KdV-type equations which could be reduced to the symmetrical form

$$
\begin{equation*}
u_{t}=F[u, v], \quad v_{t}=F[v, u], \tag{30}
\end{equation*}
$$

where $F[u, v]=F\left[u, u_{x}, u_{x x}, \ldots, v, v_{x}, v_{x x}, \ldots\right]$ denotes differential polynomial function of two variables. However, our system of equations (24) cannot be reduced to the symmetrical form by the linear transformation.

Interestingly system (28) collapses when $u=2 v$. Indeed the condition $u=2 v$ is equivalent with the assumption that

$$
\begin{equation*}
a_{x}=2 b_{x}-\frac{1}{2} b^{2}, \tag{31}
\end{equation*}
$$

and therefore we have $a_{t_{3}}=0$. The system of equation (29) reduces when $u=2 v$ to the modified version of the Kaup-Kupershmidt equation

$$
\begin{equation*}
b_{t}=\frac{1}{16}\left(-16 b_{x x x x}-40 b_{x x} b_{x}+20 b_{x x} b^{2}+20 b_{x}^{2} b-b^{5}\right)_{x} . \tag{32}
\end{equation*}
$$

Our equations (28) and (29) are Hamiltonian equations where

$$
\binom{a}{b}_{t_{n}}=\mathcal{D}\binom{\frac{\delta H_{n}}{\delta a}}{\frac{\delta H_{n}}{\delta b}}=\frac{1}{2}\left(\begin{array}{cc}
-4 \partial-\left(\partial^{-1} a_{x}-a_{x} \partial^{-1}\right) & -2 \partial-\partial^{-1} b_{x}+b \tag{33}\\
-2 \partial-b-b_{x} \partial^{-1} & -2 \partial
\end{array}\right)\binom{\frac{\delta H_{n}}{\delta a}}{\frac{\delta H_{n}}{\delta b}},
$$

where $n=3,5$ and

$$
\begin{align*}
& H_{3}=\int \mathrm{d} x\left(\frac{1}{2} a_{x x} a-2 b_{x x} a+2 b_{x x} b+b_{x} b a-\frac{1}{8} b^{4}\right) \\
& \begin{aligned}
H_{5}=\int \mathrm{d} x(24 & a_{x x x x} a+14 a_{x x} a_{x} a-108 b_{x x x x}(a-b)+54 b_{x x x} b_{x} b \\
& +b_{x x}\left(234 b_{x} a-36 a_{x} a-108 b_{x} b-18 b^{2} a\right)+b_{x}^{2}\left(27 b^{2}-36 b a\right) \\
& \left.+b_{x}\left(b b^{3} a-36 a_{x x} a+18 b a_{a} a\right)+9 b^{2} a_{x x} a\right) .
\end{aligned} \tag{34}
\end{align*}
$$

It is easy to check that the operator \mathcal{D} is the Hamiltonian operator. Indeed it is enough to note that under the Miura transformation (27) this operator transforms to the $\hat{J}=\mathcal{F D \mathcal { D }}{ }^{\star}$, where \mathcal{F} is the Freche derivative of the Miura transformation and \star denotes the Hermitian conjugation.

$$
\hat{J}=\left(\begin{array}{cc}
\partial & 0 \tag{35}\\
0 & -\partial-\frac{1}{2} b
\end{array}\right)
$$

Let us apply finally the factorization procedure directly to the constrained Kadomtsev-Petviashvili-Lax operator. We consider therefore two different Lax operators

$$
\begin{equation*}
L_{1}=\partial^{3}+v \partial+\frac{1}{2} v_{x}+h \partial^{-1} h, \quad L_{2}=\partial^{3}+(u-v) \partial+\frac{1}{2}\left(u_{x}-v_{x}\right)+g \partial^{-1} g \tag{36}
\end{equation*}
$$

and construct the new Lax operator as

$$
\begin{equation*}
L=L_{1} L_{2} \tag{37}
\end{equation*}
$$

This Lax operator generates the integrable hierarchy of four interacting fields. The first nontrivial equations are

$$
\begin{align*}
& u_{t_{3}}= \frac{9}{2}\left(6 g^{2}+6 h^{2}-\frac{3}{2} u^{2}+6 v u-6 v^{2}\right)_{x} \\
& v_{t_{3}}= \frac{9}{2}\left(12 h h_{x}+2 u_{x x x}-4 v_{x x x}+v_{x} u-6 v_{x} v+2 v u_{x}\right) \\
& g_{t_{3}}= \frac{9}{2}\left(2 g_{x x x}-u_{x} g+u g_{x}+3 v_{x} g\right) \tag{38}\\
& h_{t_{3}}= \frac{9}{2}\left(2 h_{x x x}+2 u_{x} h+u h_{x}-3 v_{x} h\right) \\
& u_{t_{5}}=\left(60 g_{x x} g+15 g_{x}^{2}+60 h_{x x} h+15 h_{x}^{2}-u_{x x x x}+5 u_{x x} u+\frac{35}{24} u^{3}-\frac{15}{2} u g^{2}+\frac{75}{2} u h^{2}\right. \\
& \quad-15 v_{x x} u+30 v_{x x} v+\frac{15}{2} v_{x}^{2}-\frac{15}{2} v_{x} u_{x}+\frac{15}{2} v^{2} u+45 v g^{2} \\
&\left.-45 v h^{2}-15 v u_{x x}-\frac{15}{2} v u^{2}\right)_{x} \\
& \begin{aligned}
v_{t_{5}}=30 g_{x x x} g+ & 90 g_{x x} g_{x}+30 h_{x x x} h-5 u_{x x x x x}-\frac{5}{2} u_{x x x} u-\frac{15}{2} u_{x x} u_{x}+30 u_{x} h^{2}+45 u h_{x} h \\
& +9 v_{x x x x x}+15 v_{x x x} v+\frac{45}{2} v_{x x} v_{x}+\frac{15}{2} v_{x} g^{2}-\frac{75}{2} v_{x} h^{2}-\frac{5}{2} v_{x} u_{x x}-\frac{5}{8} v_{x} u^{2} \\
& +\frac{15}{2} 60 v_{x} v^{2}+30 v g_{x} g-60 v h_{x} h-5 v u_{x x x}-\frac{5}{2} v u_{x} u \\
g_{t_{5}}=9 g_{x x x x x}- & \frac{15}{2} g_{x} g^{2}+30 h_{x} h g+\frac{15}{2} h^{2} g_{x}+\frac{5}{2} u_{x x x} g-\frac{5}{2} u_{x x} g_{x}+\frac{5}{4} u_{x} u g-\frac{5}{8} u^{2} g_{x} \\
& +\frac{15}{2} u g_{x x x}+\frac{45}{2} v_{x x} g_{x}+\frac{45}{2} v_{x} g_{x x}+\frac{15}{4} v_{x} u g-\frac{15}{2} v_{x} v g-\frac{15}{2} v^{2} g_{x}+\frac{15}{2} v u g_{x} \\
& \quad-\frac{5}{2} u_{x} u h-\frac{5}{8} u^{2} h_{x}+\frac{15}{2} u h_{x x x}-\frac{45}{2} v_{x x} h_{x}-\frac{45}{2} v_{x} h_{x x} \\
& +\frac{15}{4} v_{x} u h-\frac{15}{2} v_{x} v h-\frac{15}{2} v^{2} h_{x}+\frac{15}{2} v u_{x} h+\frac{15}{2} v u h_{x}
\end{aligned} \\
& h_{t_{5}}=9 h_{x x x x x}+ \frac{15}{2} h_{x} g^{2}-\frac{15}{2} h_{x} h^{2}+30 h g_{x} g+\frac{5}{2} u_{x x x} h+20 u_{x x} h_{x}+\frac{45}{} h_{x x}
\end{align*}
$$

The last system of equations could be considered as the four-component generalized KaupKupershmidt equation. This equation reduces to the two-component Kaup-Kupershmidt equation when $g=h=0$.

References

[1] Błaszak M 1998 Multi-Hamiltonian Theory of Dynamical Systems (Berlin: Springer)
[2] Gelfand I M and Dikii L A 1976 Funct. Anal. Appl. 10250
[3] Sato M and Sato Y 1983 Soliton equations as dynamical systems on infinite Grassmann manifold Nonlinear Partial Differential Equations in Applied Science (Lecture Notes in Num. Appl. Anal. vol 5) ed H Fujita, P D Lax and G Strang (Tokyo: North-Holland) p 259
[4] Oevel W and Strampp W 1993 Commun. Math. Phys. 15751
[5] Kupershmidt B 1988 Commun. Math. Phys. 9951
[6] Dodd R and Fordy A 1982 Phys. Lett. A 89168
[7] Hirota R and Satsuma J 1981 Phys. Lett. A 85407
[8] Popowicz Z 2003 Phys. Lett. A 317260
[9] Fordy A P and Gibbons J 1980 J. Math. Phys. 212508
[10] Kaup D J 1980 Stud. Appl. Math. 62189
[11] Sawada K and Kotera T 1974 Prog. Theor. Phys. 511255
[12] Foursov M 200 J. Math. Phys. 416173

